Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites.

نویسندگان

  • J T Yabe
  • T Chylinski
  • F S Wang
  • A Pimenta
  • S D Kattar
  • M D Linsley
  • W K Chan
  • T B Shea
چکیده

We examined the steady-state distribution and axonal transport of neurofilament (NF) subunits within growing axonal neurites of NB2a/d1 cells. Ultrastructural analyses demonstrated a longitudinally oriented "bundle" of closely apposed NFs that was surrounded by more widely spaced individual NFs. NF bundles were recovered during fractionation and could be isolated from individual NFs by sedimentation through sucrose. Immunoreactivity toward the restrictive C-terminal phospho-dependent antibody RT97 was significantly more prominent on bundled than on individual NFs. Microinjected biotinylated NF subunits, GFP-tagged NF subunits expressed after transfection, and radiolabeled endogenous subunits all associated with individual NFs before they associated with bundled NFs. Biotinylated and GFP-tagged NF subunits did not accumulate uniformly along bundled NFs; they initially appeared within the proximal portion of the NF bundle and only subsequently were observed along the entire length of bundled NFs. These findings demonstrate that axonal NFs are not homogeneous but, rather, consist of distinct populations. One of these is characterized by less extensive C-terminal phosphorylation and a relative lack of NF-NF interactions. The other is characterized by more extensive C-terminal NF phosphorylation and increased NF-NF interactions and either undergoes markedly slower axonal transport or does not transport and undergoes turnover via subunit and/or filament exchange with individual NFs. Inhibition of phosphatase activities increased NF-NF interactions within living cells. These findings collectively suggest that C-terminal phosphorylation and NF-NF interactions are responsible for slowing NF axonal transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics.

C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and g...

متن کامل

Influence of a GSK3β phosphorylation site within the proximal C-terminus of Neurofilament-H on neurofilament dynamics

Phosphorylation of the C-terminal tail of the heavy neurofilament subunit (NF-H) impacts neurofilament (NF) axonal transport and residence within axons by fostering NF-NF associations that compete with transport. We tested the role of phosphorylation of a GSK-3β consensus site (S493) located in the proximal portion of the NF-H tail in NF dynamics by transfection of NB2a/d1 cells with NF-H, wher...

متن کامل

Kinesin-mediated transport of neurofilament protein oligomers in growing axons.

We examined cytoskeleton-associated forms of NF proteins during axonal neuritogenesis in cultured dorsal root ganglion (DRG) neurons and NB2a/d1 neuroblastoma. In addition to filamentous immunoreactivity, we observed punctate NF immunoreactivity throughout perikarya and neurites. Immuno-electron microscopy revealed this punctate immunoreactivity to consist of non-membrane-bound 75 nm round/ovoi...

متن کامل

Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules.

The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesi...

متن کامل

Axonal transport of microtubule-associated protein 1B (MAP1B) in the sciatic nerve of adult rat: distinct transport rates of different isoforms.

Cytoskeletal proteins are axonally transported with slow components a and b (SCa and SCb). In peripheral nerves, the transport velocity of SCa, which includes neurofilaments and tubulin, is 1-2 mm/d, whereas SCb, which includes actin, tubulin, and numerous soluble proteins, moves as a heterogeneous wave at 2-4 mm/d. We have shown that two isoforms of microtubule-associated protein 1B (MAP1B), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2001